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COMPUTATIONAL MECHANICS 
 

We have continued our work on development and application of novel Homotopy 
Analysis Methods. We have demonstrated the advantage of using the modification 
of the Homotopy Analysis Method with a non homogeneous term for a system of 
equations for the first time. We have also developed a Homotopy Analysis Method 
with an optimal distribution of the initial conditions in a shooting method to solve 
two point boundary value problems. 
 
Computational nanomechanics focuses on nonlocal continuum modelling and 
molecular dynamics simulations in nanomaterials. Parallel Super Computers are 
used to analyse and simulate the properties of new materials (nanomaterials) from 
the nano to macroscale. This reduces the cost of expensive experimental analysis. 
Studies have been carried out on a nonlocal continuum theory for modeling the 
buckling of Carbon Nanotubes. We have calibrated the nonlocal small scale 
parameter from Molecular Dynamics simulations and we have shown that the 
approach currently used in the literature may lead to inaccurate results. We have 
demonstrated the efficiency of some open source software for solving these problems. 
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3.1 Influence of Thermal Radiation on Unsteady Flow over a Contracting 
Cylinder with Thermal-Diffusion and Diffusion-Thermo Effects by 
HAM with Non-Homogeneous Term 
 
An analytical study is carried out to present the thermal radiation, Dufour and Soret effects on 
unsteady viscous flow over a contracting cylinder.  The coupled nonlinear partial differential 
equations are transformed into a system of coupled nonlinear ordinary differential equations by 
using a suitable similarity transformation. The homotopy analysis method (HAM) and HAM with 
a non-homogeneous term are employed to obtain analytical solutions for the system of coupled 
nonlinear ordinary differential equations through the minimization of the averaged square 
residual error.  The inclusion of the non-homogeneous term is presented to further minimize the 
average square residual error (∆ ). We observe a better convergence in comparison to HAM 
solutions.  To the best of our knowledge this is the first application to a system of coupled 
nonlinear differential equations where the idea of the inclusion of the non-homogeneous term is 
used. We present the convergence analysis for the solutions obtained by HAM and HAM with a 
non-homogeneous technique in Tables [3.1] and [3.2]. It is clear from these tables that with the 
latter approach HAM with a non-homogeneous term gives better convergence and minimum 
square residual error in comparison to standard HAM approach. 
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h  ∆  
-0.25 0.002751320 
-0.26 0.002231060 
-0.27 0.001805630 
-0.28 0.001459880 
-0.29 0.001184700 
-0.30 0.000982196 
-0.31 0.000879418 
-0.32 0.000963043 
-0.33 0.001463140 
-0.34 0.002952130 
-0.35 0.006827180 

1c  ∆  

0.5 0.000716046 
0.6 0.000694628 
0.7 0.000676962 
0.8 0.000663048 
0.9 0.000652887 
1.0 0.000646477 
1.1 0.000643820 
1.2 0.000644914 
1.3 0.000649761 
1.4 0.000658360 
1.5 0.000670711 

Table 3.1 The averaged square residual error with 
varying at 10th order of approximation with 
standard HAM (without non-homogeneous term) 
technique 1Pr = , 1−=S , 65.0=Sc , 1=Sr ,

06.0=Du , 10=dR .  
 

Table 3.2 The averaged square residual error with 
varying at 10th order of approximation with non-
homogeneous term 1F( ) c e−ηη = and for optimal 
h 0.31= − , 1Pr = , 1−=S , 65.0=Sc , 1=Sr , 

06.0=Du , 10=dR .   
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3.2 Homotopy Solutions for Nonlinear Problems with Two-Point 
Neumann Boundary Conditions 
 
 We study a comparison of modified versions of Rational Homotopy Perturbation Method 
(RHPM) and homotopy analysis method (HAM) to solve two-point nonlinear problems with 
Neumann boundary conditions which very often arises in physical systems. The modification of 
RHPM relies on the strategic distribution of the Neumann boundary conditions among the 
different iterations. RHPM gives solutions assuming the form of solution to be a rational 
polynomial and then using the distribution of boundary conditions throughout the different 
orders. HAM coupled with a shooting technique gives good results in a very simple and 
straightforward way with fewer assumptions. The results of both methods are accurate with 
respect to the exact solution of the problems considered. Nonetheless, RHPM requires only a 
second order approximation to obtain similar results in comparison to the seventh order HAM 
approximation. To check the efficiency of the proposed modifications we solve two nonlinear 
problems with given Neumann boundary conditions one is Bratu’s problem and other is Burger’s 
equation. The comparative results for the Bratu’s and the Burger’s equation are shown in Table 
[3.3] and [3.4]. 
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x RHPM 
solution 

HAM 
solution 

Exact 
solution 

0 0 0 0 
0.1 0.09988958 0.0998334 0.0998334 
0.2 0.19879931 0.198668 0.198669 
0.3 0.29566654 0.295511 0.295520 
0.4 0.38951433 0.389379 0.389418 
0.5 0.47943371 0.479311 0.479426 
0.6 0.56456849 0.564369 0.564642 
0.7 0.64410435 0.64366 0.644218 
0.8 0.7172632 0.716345 0.717356 
0.9 0.78330427 0.781668 0.783327 
1.1 0.89131935 0.887798 0.891207 
1.2 0.93212389 0.927808 0.932039 
1.3 0.96353598 0.958955 0.963558 
1.4 0.98531969 0.981452 0.98545 
1.5 0.99746956 0.995789 0.997495 
π/2 1.00039043 1.00138 1.000000 

X RHPM 
solution 

HAM 
solution 

Exact 
solution 

0 0 0 0 
0.1 0.00987156 0.0100167 0.0100167 

0.2 0.04000446 0.040271 0.040270 
0.3 0.09119138 0.0914016 0.091383 
0.4 0.16446022 0.164556 0.164458 
0.5 0.26133364 0.261514 0.261168 
0.6 0.38410832 0.384852 0.383930 
0.7 0.53620148 0.538116 0.536172 
0.8 0.72263494 0.725982 0.722781 
0.9 0.95077066 0.954324 0.950885 
1.0 1.23125000 1.230100 1.231250 

Table 3.3 The comparative study for the solution of 
Bratu’s problem with the proposed second order 
RHPM and the proposed seventh order HAM with 
the exact solution. 

Table 3.4 The comparative study for the solution of 
Burger’s problem with the proposed second order 
RHPM and the proposed seventh order HAM up to 
fifth terms of sin (2x) with the exact solution. 
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3.3 Small Scale Parameter Calibration for Buckling Analysis of Carbon 
Nanotube using Molecular Dynamic Simulation 
 
The aim of the present study is to improve nonlocal continuum elasticity theory for Carbon 
Nanotubes (CNT) by calibrating its small scale parameter. In this work, the small scale 
parameter of the Nonlocal Timoshenko beam model and the Nonlocal shell model has been 
calibrated. Despite the high number of studies conducted on the buckling of CNTs, there are still 
several issues that are not addressed sufficiently like change of properties with chirality and 
aspect ratio of CNTs since most of the studies conducted on buckling of CNT are based on 
continuum mechanics which is used conveniently to analyze large-scale problems. However 
continuum theory cannot address small size effect problems. Hence to overcome this drawback, 
nonlocal continuum theory was developed.  
 
Nonlocal continuum theory uses a small scaling parameter (eo) to address this nanoscale  
problem and can also be used to address the  chirality effect of CNTs but some arbitrary value 
is taken on the  basis of trial and error and leads to inaccurate results. In this work Molecular 
Dynamics Simulation (MDS) is used to calibrate this small scale parameter value and an 
empirical relation has been developed which can be directly be used in the nonlocal continuum 
theory to study the mechanical properties of CNT. 
 
In this work Molecular Dynamic Simulation (MDS) has been used to calculate the critical 
buckling load and the critical buckling strain. The Figure 3.1 shows compressive load vs strain 
diagram for a (16, 0) zigzag Carbon Nanotube with 1.25 nm diameter and 10 nm length. 
 
 
 
 
 
 
 
                       
 
 
 
 
 

Figure 3.1 Critical buckling load vs Critical Strain 
 

As is seen in the Figure 3.1, the  load increases with strain but at a point  it fails and there is a 
sudden drop in load, the strain at this point where it loses its load carrying capacity is called its 
critical strain and maximum load at this point is called Critical Buckling load. The Carbon 
Nanotube under goes two modes of buckling, namely column and shell buckling. Critical 
Buckling load analysis has been carried out for CNT for various diameters ranging from 0.5 nm 
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to 2 nm for various chiral angles of the Carbon Nanotube (0°, 5° & 30°). It is found that the 
buckling mode depends on its diameter. A transition diameter is 1nm. Carbon nanotubes below 
1nm show column buckling and above 1nm show shell buckling which is also shown in Figures 
3.2 and 3.3.  
 
In the shell buckling diagram a (16,0) a zigzag Carbon Nanotube, with a diameter of 1.25 nm 
shows shell buckling at strain of 0.05783 whereas the (7,7) Carbon Nanotube where the 
diameter is 0.949 shows column buckling at strain of 0.04305. 
 

Figure 3.2 Column Buckling of (7,7) Carbon Nanotube 
 
 
 
 
 
 
 
 
 

Figure 3.3 Shell Buckling of (16,0) Carbon Nanotube 
 
From this Molecular Dynamic Simulation Study Critical data, it is shown that a single fixed small 
scaling parameter cannot be used in every condition (chirality and aspect ratio) as it will yield 
inaccurate results. This MDS data is used to generate the small scaling parameter data for 
nonlocal continuum theory for nonlocal the Timoshenko Beam model and the Nonlocal Shell 
model and small scaling parameter data is used to develop empirical relations for nonlocal 
continuum theory which can be directly used in without selecting any particular small scaling 
parameter value. 

                                                                                                     Senthilkumar V and Agrawal A*                           
*NIT Calicut  

 
3.4 Symbolic Computation Analysis of One-Dimensional Nanostructures 
using Open Source Software 
 
There are many commercial computer algebra system software like Mathematica, Matlab, and 
Maple which are available at high cost. Many non commercial software like Maxima, GiNaC, 
SymPy, Sage, Axiom are available as open source packages. Here, the structural behaviour of 
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carbon nanostructures are investigated using symbolic computation with open source software 
Sage-Maxima. This symbolic computing packages gives quick solutions compared with 
numerical analysis. For larger computations, parallel computation is required to study the 
mathematical model. 

 
Mathematical models of carbon nanorods and nanotubes are studied by using the open source 
computer algebra system (CAS) software Maxima. Vibration analysis of nanorods and buckling 
behaviour of carbon nanotubes are carried out using continuum elasticity modeling. It has been 
observed that the open source software Maxima is comparable with proprietary software in 
giving reliable results and the execution time is very small for linear problems. It is difficult to 
simplify and solve more complex equations by using Maxima. SymPy can be used to solve 
complex equations but the excecution time has to be compromised with the simple 
implementation methodology. This can be achieved through the Super Computer facility 
available in the institute. SAGE and SymPy have been installed in the Super Computer “Cluster 
Platform 3000 BL460c with 1084 nodes Gen8”.  It can be used to solve complex equations and 
higher order polynomials (order > 200) using SAGE parallel programming. 
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