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Ø  Field-Consistency Aspects of Locking in a Geometrically Non-Linear Beam 
Formulation 

Ø  Mesh Distortion, Locking and the Use of Metric Trial Functions for 
Displacement Type Finite Elements 

Ø  Impact Response and Damage in Curved Composite Laminates 

Ø  Making Sense of the Quadrilateral Area Coordinate Membrane Elements 

Ø  Inertial Effects on Forced Particles in Unsteady Flows at Low Reynolds 
Numbers 
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Discretisation errors that appear uniquely in a 
non-linear beam formulation due to the 
presence of non-linear derivative terms in the 
membrane strain term in the form of degraded 
performance (locking) and spurious stress 
oscillations can be interpreted using the field-
consistency paradigm. The errors are seen to 
separate out into the usual discretisation 
errors and that of a field-inconsistency origin. 
Numerical experiments with a simple beam 
element show that reduced integration can be 
used to remove the field-inconsistency errors. 
Also, it is seen that the locking errors 
contribute to both local and global (pollution) 
error. An optimal stress recovery strategy 
where spurious stress due to field-
inconsistency is present is also 
recommended. 
 
The phenomenon of locking (in the form of 
delayed convergence and spurious stress 
oscillations) is quite well known for linear 
formulations. However, there are very few 
studies on locking type behaviour in non-linear 
problems.  
 
The bending of beams with moderately large 
rotations (von Karman theory) can be 
described within the context of the classical 
Euler-Bernoulli (EB) theory by writing the 
strains   �     (extensional or membrane) strain 
and   �     (curvature) in terms of   u  and  w  
which are the  in-plane (axial) and transverse 
displacements. The non-linear stiffness 
matrices can then be set up quite easily 
following standard procedures and a direct 
iteration or Newton-Raphson method can be 
used to obtain solutions to the non-linear 
problem.  
 
It is well known that the simplest 2-node linear 
EB element based on linear functions for   u   
and  cubic functions for  w  is free of locking 
and produces excellent displacements and 
stress predictions.  However, both Kikuchi and 
Aizawa, and Reddy have reported that if the 
non-linear formulation uses the conventional 2 

pt.  Gaussian integration rule to compute all 
stiffness matrices (i.e. linear and non-linear), 
the convergence is noticeably poor. This was 
attributed to membrane locking and it was 
shown that by using a 2 pt.  rule for the 
bending energy and a reduced 1 pt. rule for 
the membrane energy, excellent results were 
obtained. We can re-interpret this from the 
field-consistency angle to show that only the 
constant term is consistently constituted to 
model inextensional bending. Thus, only a 1 
pt. integration of the extensional strain will 
preserve this consistency. A higher order 
rule, say the 2 pt. rule which is 
conventionally used for the formulation, will 
retain the higher order terms, thus leading to 
poor convergence, and higher order stress 
oscillations. Our numerical examples below 
highlight these points very clearly. 
 
Consider a uniform beam of length L = 100, 
cross section dimensions of 1 x 1, made of a 
material with  E  = 30 x 106   that is simply 
supported at both ends subjected to a 
uniformly distributed load of intensity  q  per 
unit length.  The units are consistently 
chosen, so that the exact deflection at the 
middle of the beam in linear bending theory 
is 0.5208, when  q = 1. In linear bending 
theory, where the beam is assumed to 
undergo pure bending (i.e. there is no axial 
deformation), it is immaterial to consider 
whether the beam is allowed free movement 
in the axial direction (i.e.  u) at the supported 
ends. However, in non-linear bending, this is 
a crucial distinction. We shall therefore 
designate by the hinged-hinged (HH) 
condition, the case where there is no axial 
restraint at both ends, Here, we have 
inextensional bending, which is largely of a 
linear nature.   
�

The HH case is ideal to test the consistency 
aspect of the problem. As a non-linear beam 
element formulation is being used, a correct 
model should be able to recover the purely 
linear bending response under increasing 
load. This is possible only if the element can 
ensure that the inextensional axial condition 
(i.e. as there is no axial restraint at both 
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ends, no axial force should develop) is 
consistently recovered throughout. We shall 
use two versions of the EB element. The 
EB2x2 element which will have locking uses 2 
pt. integration for bending energy and 
extensional energy  while the EB2x1 element 
which will be lock free according to our 
foregoing analysis will use 2 pt. integration for 
bending energy but only 1 pt. integration for 
the extensional energy. Using symmetry, half 
of the beam is modeled with equal length 
elements.  
�

Table 3.1. Central deflections for a Hinged-Hinged Beam 
under uniformly distributed load where half the beam is 
modeled with four equal length EB beam elements. 
 

Present Reddy [9] 
q 

2x2 2x1 2x2 2x1 

1 0.5108 0.5208 0.5108 0.5208 

2 0.9738 1.0417 0.9739 1.0417 

3 1.3764 1.5625 1.3764 1.5625 

4 1.7265 2.0833 1.7265 2.0833 

5 2.0351 2.6042 2.0351 2.6042 

6 2.3115 3.1250 2.3116 3.1250 

7 2.5624 3.6458 2.5630 3.6458 

8 2.7926 4.1667 2.7930 4.1667 

9 3.0060 4.6875 3.0060 4.6875 

10 3.2051 5.2083 3.2051 5.2083 

�

 
Table 3.1 shows the deflection under the load 
as  q increases from 1 to 10, when half of the 
beam is modeled with four equal length 
elements. Results from Reddy are also 
shown. It is clear that the EB2x1 model is able 
to capture the linear behaviour exactly but the 
EB2x2 model shows an additional stiffening 
due to the inability of the model to capture the 
zero axial force consistently due to the 
presence of the inconsistent terms.  Figure 3.1 
shows the variation of axial force for  q = 1  
when half of the HH beam is modeled with  2  
EB2x1  elements. It is seen that when  the 
axial force is sampled at the Gauss point, it 
predicts  the exact zero value expected 
accurately.  Also   shown   for   effect   is    the   

Axial Force Variation, HH Beam with udl, 2 (2x1) EB Elements
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Figure 3.1. The variation of axial force for  q = 1  when 
half of the HH beam is modeled with  2  EB2x1  elements 
 
complex quartic variation in  N   which 
accounts for the additional stiffening effect 
seen if a 2x2 integration strategy is used.  
 

R Murali and G Prathap 
 

 
 

 

The use of metric trial functions to represent 
the real stress field in what is called the 
unsymmetric finite element formulation is an 
effective way to improve predictions from 
distorted finite elements. This approach 
works surprisingly well because the use of 
parametric functions for the test functions 
satisfies the continuity conditions while the 
use of metric (Cartesian) shape functions for 
the trial functions ensures that the stress 
representation during finite element 
computation can retrieve in a best-fit 
manner, the actual variation of stress in the 
metric space. However, the issue of how to 
handle situations where there is locking 
along with mesh distortion has never been 
addressed. We have shown that the use of a 
consistent definition of the constrained strain 
field along with the unsymmetric approach 
can  ensure  a  lock-free  solution even when  
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there is mesh distortion. The three-noded 
Timoshenko beam element is used to illustrate 
the principles. Some significant conclusions 
are drawn regarding the optimal strategy for 
finite element modelling where distortion 
effects and field-consistency requirements 
have to be reconciled simultaneously. 
 

Surendra Kumar and Gangan Prathap 
 

 
 
The impact response and the impact-induced 
damage in curved composite laminate 
subjected to transverse impact by a metallic 
impactor are studied using three-dimensional 
finite element method. Several example 
problems of graphite/epoxy cylindrical shell 
are considered and effects of impactor 
parameter (impactor velocity and impactor 
mass) and laminate characteristics (shell 
curvature and fibre orientation of plies) are 
established. Impact- induced damages (matrix  
cracking and delamination) are predicted 
using appropriate three-dimensional stress-
based failure criteria. In order to take account 
of degradation of material due to damage 
during the impact, the stiffness matrix of the 
failed region of the laminate is reduced as the 
solution progresses. 
�

Surendra Kumar, B N Rao and B Pradhan 
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For a half-century, one of the demanding 
challenges in finite element research has 
been the search for robust quadrilateral 
membrane elements which can pass the 
patch test, remove parasitic shear and 
Poisson’s ratio stiffening, and are insensitive 
to mesh distortion. This requires the delicate 
balancing of continuity requirements and 
completeness requirements. The 
isoparametric quadrilateral membrane 
elements satisfy the continuity requirements 
always. In rectangular form, they perform 
extremely well, except in cases where 
parasitic shear is involved. So their poor 
performance when the elements are used in 
general (i.e. distorted) quadrilateral form is 
now attributed to the failure to accommodate 
the completeness requirements. 
 
The Quadrilateral Area Coordinates (QAC) 
approach is a compromise that tries to use 
shape functions which are in physical space, 
but as these cannot ensure exact continuity, 
require a relaxed generalized continuity to be 
be imposed. AGQ6-I and AGQ6-II are the 
two versions of the 4-node membrane 
elements combine the area coordinate 
approach with generalized conforming 
conditions. The constant stress strong patch 
test, the linear stress bending strong patch 
test  and  the  bilinear  stress  bending strong 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3.2. Two element patch test for cantilever beam with distortion parameter – various  load cases 
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patch test have been considered to assess 
the QAC elements performance, 
corresponding to the three load cases shown 
in Figure 3.2. 
 
The simplest patch for a plane stress 
problem requires two 4-node quadrilateral 
membrane elements. The distortion 
parameter   e  can be used to move from a 
rectangular division to a highly distorted 
mesh division. The beam has dimensions   
10 x 2 x 1 and the force at the free end is 
applied at nodes 3 and 6 equally as P = 0.5. 
Let the material properties be E = 75 and      
ν  = 0.25.  
 
Table 3.2  Normalized deflections  (u for axial force 
and v for end moment case)  at nodes 3 and 6 for 
cantilever beam  
 

u for axial force 
(case 1) 

v for end 
moment (case 2) 

e 
AGQ6-

I 
AGQ6-

II 
AGQ6-

I 
AGQ6-

II 

0 1.000 1.000 1.0000 1.0000 

1 1.000 1.054 1.0000 1.0000 

2 1.000 1.225 1.0000 1.0000 

3 1.000 1.544 1.0000 1.0000 

4 1.000 2.084 1.0000 1.0000 
 
From Table 3.2, it is seen that the AGQ6-I  
element  passes  the  constant  stress  strong  

patch test. However, the AGQ6-II element 
fails to pass this test, errors increasing with 
distortion and going beyond the exact value. 
From Table 3.2, for the linear bending strong 
patch test, the AGQ6-I and AGQ6-II 
elements are both free of Poisson’s ratio 
stiffening and parasitic shear and pass this 
test with flying colors if only tip deflections 
are taken into account. That this is not the 
case will be seen when we examine the 
deflections at nodes 2 and 5 in Table 3.3.  
 
We have seen that only AGQ6-II passes this 
criterion exactly. The results from AGQ6-I are 
in error and these increase with distortion. 
We see also that as distortion is introduced, 
the use of simple reduced integration 
strategies will not eliminate locking. The 
AGQ6 elements, have introduced bubble 
functions effectively involving quadratic terms 
in x and y and so meet the field-consistency 
criteria (shear strains are complete to linear 
terms in x and y without introducing 
inconsistent terms) and are able to eliminate 
parasitic shear, even where there is 
distortion.  It is this result (Table 3.2) that 
raised false hopes that the AGQ6 elements 
have finally ended a long search for the 
perfect family of membrane elements. Tables 
3.2 and 3.3 warn us that the search is not 
over; the AGQ6-I element fails one patch test 
and the AGQ6-II fails the other and the 
partial successes seen are to be taken as 
fortuitous. 

 
 

Table 3.3 Normalized deflections v, at nodes 2 and 5 for cantilever beam subjected to end moment 
 

Node 2 Node 5 e 
Exact AGQ6-I AGQ6-II Exact AGQ6-I AGQ6-II 

0 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 

1 0.3600 0.3533 0.3600 0.1600 0.1533 0.1600 

2 0.4900 0.4633 0.4900 0.0900 0.0633 0.0900 

3 0.6400 0.5800 0.6400 0.0400 -0.0200 0.0400 

4 0.8100 0.7033 0.8100 0.0100 -0.0967 0.0100 
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Table 3.4 Normalized deflections v, at node 3 for 
cantilever beam subjected to shear force 
 

  v for shear force (case 3) 
e exact 

AGQ6-I AGQ6-II 

0 1.0000 0.9396 0.9396 

1 1.0000 0.9545 0.9650 

2 1.0000 0.9999 1.0520 

3 1.0000 1.0808 1.2370 

4 1.0000 1.2105 1.5916 
 
From Table 3.4 we have seen that both 
versions of the area coordinate generalized 
conforming elements give higher answers as 
distortion increases for the bilinear bending 
strong patch test (Case 3). The use of area 
coordinates is a proxy for the use of metric 
functions and so completeness is achieved in 
physical space and not in natural space. By 
adding internal functions, completeness to 
quadratic terms in metric space is provided, 
but we see that this is not enough. It is 
known that the strict interpretation of the 
variational basis for the development of 
displacement type finite elements leads to a 
projection theorem and energy-error rules 
that require variationally correct solutions to 
have less energy than the exact solution 
(Tables 3.2, 3.3 and 3.4). Clearly, from this 
point of view, the area coordinate elements 
are not governed by the boundedness 
property. So it has been understood that 
more needs to be done both in terms of utility 
and performance and also in terms of 
understanding the QAC elements.  
 

V Senthilkumar and G Prathap 
 

 
 
The main objectives of the above work are 
the following: 
 
a) To study the dynamics of periodically 

forced small particles in a uniform time 

dependent flow field in the presence of 
fluid and particle inertia at low Reynolds 
numbers. 

 
b) To study the rheology of a dilute 

suspension of a number of such particles 
at low Reynolds numbers under the 
action of an external periodic force field. 

 
c) To determine the parametric regions, if 

any, of such systems where chaos can 
occur in the dynamics of individual 
particles and also in the rheological 
properties of such systems. 

 
The problem was restricted to “The Effect of 
Inertia on the Dynamics of a Periodically 
Forced Spherical Particle in a Quiescent 
Fluid” due to logistic and technical problems 
during the year 2005-06.  
 
The formalism of Lovalenti and Brady (1993) 
was used and a formula was obtained for the 
variation of the velocity and position of the 
particle moving in a quiescent fluid, along the 
direction of the external periodic force. 
Software was developed to study the effect 
of inertia on the dynamics of a periodically 
forced spherical particle in a quiescent fluid 
based on the following formulae:  
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In the current year the software developed 
for studying the effect of inertia on the 
dynamics of a periodically forced spherical 
particle in a quiescent fluid was tested for 
consistency.  There were 3 tests performed. 
 
TEST1: The solution of the problem of a 
spherical particle of greater density than fluid 
derived using the assumptions of Reynolds 
number Re<<1 And Strouhal’s number Sl 
arbitrary is well known from the literature and 
this solution was reproduced when we 
assumed that the external force was 
constant. 
 
TEST2: We assumed that the velocity of the 
fluid at infinity was a constant ie, U� = U0 and 
we set ReF = 0. Under these assumptions Up 
� U0 as t � �. This result was obtained from 
the software. 
 
TEST3: We generated number of outputs 
using U0 = 0 and U0�  0 and compared the 
results at U0� 0. We found that the results 
matched for U0 = 0 and U0�0.  
 
Thus these tests gave us reasonable 
confidence in our results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This has been incorporated in the software 
and various interesting results and patterns 
of Up versus Yp plots have been obtained.  
 

 
Various other analyses were performed using 
the software. 
 

1. The nonlinear term was taken to be 
zero and in the phase plot between 
velocity of the particle and position of 
the particle was obtained to be a limit 
cycle. 

                                                    
2. The sign of the nonlinear term was 

changed, which resulted in a change 
in the direction of the drift velocity. 

 
A large number of solutions were generated 
for different values of U0, Re and ReF. this led 
to a large number of different patterns of Up 
versus Yp plots which are being analyzed.  

 
Formalism was developed for a non 
quiescent fluid by considering the velocity of 
the fluid at infinity as a constant, i.e., U� = U0 
as:  
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The important result of this was that the 
effect of U0 dominated as the Reynolds 
number was increased. 
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Some of the typical patterns of Up versus Yp plots are as shown below: 
 

 

 

 
 
Figue 3.3 Phase plots of U p for different values of Re and ReF. 

 
 

K Madhukar, R Priya, I S Shivakumar and T R Ramamohan 
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