
 51

 5

 High Performance Computing and Networking (HPCN)

Mathematical modelling and computer simulation in the fields of ocean, atmosphere, earth science
and engineering involve computational tasks which can only be provided by High Performance
Computing(HPC). The need for computational power, measured in terms of Giga Floating Point
Operations per Seconds (FLOPS), grows exponentially with every bit of increase in the complexity of
problem. C-MMACS today has one of the best computing facilities in the country.

 Highlights

The year 2004-05 has been a year of growth and expansion for HPCN both in terms of computing resource and
areas of research. A substantial enhancement of C-MMACS computing platform took place through installation of
an ALTIX-350 12-processor system. The two prominent research areas under HPCN: Network Security and
Cryptography, provided new results in these important areas.

(nmax-nmin) and (mmax-mmin) with k for 250,000 sets Unsolicited packets received at C-MMACS. Day
 [n =10000-bits & l =16-bits] corresponds to Jan. 22, 2005

Inside

 • Towards a Measurement Framework for DoS Attack Prevalence
 • An Experimental Study on Practicability of Acknowledgment Spoofing in TCP Servers
 • Multiparty Secure Key Exchange Algorithm using Neural Cryptography
 • Statistical Analysis of Random Key Generation Algorithm
 • High Performance Computing Resources

 52

 53

 5.1 Towards a Measurement Framework for DoS
 Attack Prevalence

Internet has become a platform where unethical
activities such as Denial-of-Service (DoS) attacks,
port-scanning and automatic worm spreading etc.
are being practiced massively. "Backscatter
analysis", a technique by which unsolicited packets
are collected and analyzed to gain insight into the
nature of malicious activities on the Internet, was
applied for the first time by David Moore,
Cooperative Association for Internet Data Analysis
(CAIDA). The main objective of our work is to
design, develop and deploy a measurement
system, similar to that of Moore's, for in-depth
understanding of the nature of malicious activities
including DoS attacks.

Fig 5.1 Unsolicited packets received at C-MMACS. Day 1
corresponds to Jan. 22, 2005

Backscatter analysis is based on a key factor that
attackers normally spoof source address of each
attack packet with a random source address picked
from a list of 232 possible IP address space.
Consider a case where an attacker, A, sends an
attack packet, P, to a target, T, by spoofing the
source address of an innocent machine, I.
Communication protocols are designed to respond
appropriately to each incoming packet, and the
address to send the response is picked from the
source address of the incoming packet. Since the
source address of P belongs to I, the response from
T, which is referred as R, goes to I.

Fig 5.2 Protocol level breakup of unsolicited Packet

Such responses are called backscatters. While the
source address of the response packet R can reveal
the attack target, other contents of R can be used to
derive additional information about the attack such
as its intensity, duration and protocol used etc.

Fig 5.3 Flag level breakup of unsolicited TCP packets

We have initiated the development of a tool to
collect and inspect each inbound packet from the
internet and classify them as normal or unsolicited
packet. The list of unsolicited packets includes
backscatters as well as other malicious packets
resulting from port-scanning etc. A preliminary
version of this tool had been deployed at C-MMACS

 54

since January 22, 2005, and it collected more than
86000 unsolicited packets during 80 days. Fig 5.1
shows the breakup of no. of unsolicited packets
received in each day. Our preliminary analysis
reveals that out of 86720 unsolicited packets,
73224 (84.43%) were TCP packets. We also
observed that 6.89 % were UDP, 8.67 % were ICMP
and 6 (negligibly small) were unknown packets. Fig
5.2 provides protocol level breakup of number of
packets received. We further sub-divided TCP
packets based on the TCP flags set in each packet.
As shown in Fig 5.3, we received 54977 (75.08%)
TCP packets with SYN ON, 5782 (7.90%) with SYN
& ACK ON, 8250 (11.27%) with RST ON and finally
4017 (5.48%) with RST & ACK ON. High value of
unsolicited SYN packets is likely an indication of
heavy port-scanning activities of C-MMACS
address space. This reveals that external agencies
are regularly using automated port-scanning tools
to identify open TCP ports at C-MMACS so that
malicious code insertion can be attempted. The
SYN & ACK packets are the backscatters of the
well known SYN flood attack happening
somewhere else on the Internet.

V Anil Kumar, G K Patra and R P Thangavelu

5.2 An Experimental Study on Practicability of
 Acknowledgment Spoofing in TCP Servers

Our previous work had identified the possibility of
a malicious TCP receiver constituting Denial-of-
Service (DoS) attack scenarios by exploiting the
features of TCP congestion control process, and
demonstrated the same through simulation. The
focus of the current work is to explore how widely
deployed Operating Systems (OS) respond to
maliciously spoofed duplicate acknowledgements
(ACKs). We implemented necessary modifications
to the TCP source code in Redhat Linux to imitate
an attacker who spoofs large number of duplicate
ACKs. Using the modified kernel, we tested three
popular UNIX OSs, SGI IRIX 6.5, IBM AIX 4.3 and
SUN Solaris 9.0, in a test bed environment
consisting of the above three servers on one side
of an IP router and the modified TCP receiver on
the other side of the router. We observed that all
the three OSs can be forced to eject large number
of new data packets in response to spoofed

duplicate ACKs. The results of these experiments
are summarized in Fig 5.4, Fig 5.5 and Fig 5.6.

Fig 5.4 Data packets ejected by IRIX TCP sender in response
to spoofed duplicate ACKs

In all the three cases, the receiver establishes a
TCP connection with the server and then request
for a file transfer from the server to the receiver.
The receiver behaves normally and acknowledges
packets up to and including packet no. 9 and then
stops generating normal ACKs, but sends large
number of duplicate ACKs to packet number 9. The
sender sends new data packets in response to
spoofed duplicate ACKs. The number of packets
sent by the server is same as the receiver window
advertised by the receiver at the time of establishing
the connection. The server, upon retransmission
timeouts, retransmits packet no. 10 as it never gets
an acknowledgement for packet no. 10. The
duplicate ACKs that reach the sender after each
retransmission of packet no. 10 force the server to
perform repeated fast recovery and this generates
additional bursts (only in the case of Fig 5.4 and
Fig 5.5).

An important observation is that though these
servers are implemented based on standard
specifications and guidelines, there exist deviations
in their behaviour. For example, while IRIX and AIX
repeat the ejection of same sequence of packets
after each retransmission timeouts, Solaris does

 55

Fig 5.5 Data packets ejected by AIX TCP sender in response
to spoofed duplicate ACKs

Fig 5.6 Data packets ejected by Solaris TCP sender in response
to spoofed duplicate ACKs

not follow this. Such deviations are not so easily
detectable and may get exposed only through this
sort of experiments. We propose to include more
operating systems like Microsoft Windows XP,
FreeBSD and Linux to our test bed and conduct
experiments on these platforms also. We also plan
to evaluate how these operating systems respond
to optimistic ACK spoofing, another exploitable
feature of TCP congestion control process.

V Anil Kumar, D Sisalem and Pradeep

5.3 Multiparty Secure Key Exchange Algorithm using
 Neural Cryptography

Secret key exchange protocol based on neural
network has been designed such that an opponent
who tries to obtain the key is unable to do so. As
an extension of the concept of supervised and
unsupervised learning, mutual learning of more
than two neural networks exhibits this novel
phenomenon, where the networks synchronize to
a state with identical time-dependent weights. The
main motivation of this work is to have secure
communication for distributed applications like
collaborations, video conferencing, replicating
servers and grid computing. The neural network
topology determines the number of inputs, the
number of outputs, the number of hidden layers
and the learning rule. Three multilayer feed forward
networks (A, B and C) with n input units and k
hidden units are considered here for explanation.

The output of each hidden layer unit is denoted by
σi

A, σi
B and σi

C depending on the network belonging
to A, B or C. The synaptic weights are represented
by n-dimensional weight vectors 'W' [-L, L] and n-
dimensional input binary vectors represented by
'X' [-1, 1]. The inner product computation yields the
values of the hidden bits σ [= sign(w.x)], which are
combined to form an output bit t for the entire
network as shown below

 A/B/C
3

A/B/C
2

A/B
1

A/B/C σσστ = (1)

The output bits are exchanged and used for the
mutual learning and synchronization. At each
training step, the machines A, B, C receives
identical input vectors X. In the training process, if
all output bits are equal i.e τA= τB= τc=τ the weights
can be changed. In this case, only the hidden unit
'i' whose output bit σi is identical to the actual output
bit τ changes its weights using the Hebbian learning
rule as follows

 i
A/B/C
i

A/B/C
i x(t)w1)(tw +=+ (2)

If the learning step pushes any component weight
out of the interval [-L, L] then the component is
replaced by ±L.

The attacking strategy is intended to prove the
protocol's robustness. The attacker 's design is

 56

Fig 5.7 (a) Synchronization (b) Learning time for two,
three and four party communication for different numbers
of input units

similar to that of the communicating parties. It uses
the same algorithm as the sender and the receiver.
The neural network topology and the Hebbian
learning rule are also the same. The only difference
lies in the fact that the attacker modifies its weights
only when the outputs of the two actually
communicating networks are equal. Then, the
weights are changed only for those hidden layer
units whose outputs match the output bits of the
communicating parties (instead of matching the
output bit of the attacker's own network). The
learning time required for the attacker to
synchronize with the sender and the receiver is
calculated by allowing the sender, receiver and
attacker to wait until all the three synchronize. The
attacker is not expected to learn the weights before
the communicating parties synchronize, because
of two reasons. Considering the case where,
τA=τB=τc=1, there are four possible configurations
of hidden units in each network (+1,+1,+1), (+1,-
1,-1), (-1,+1,-1) and (-1,-1,+1). The attacker and
the communicating parties may have different
configurations and thus modify different sets of
weights. This may result in the network weights of
the attacker and the communicating parties getting
separated by such errors made by the attacker. The
second reason is that the attacker cannot influence
the communicating parties. Fig 5.7 shows the
difference in the synchronization and learning time
for different numbers of input units. Further, Similar
results are obtained by changing the numbers of
hidden units and range of discrete weights.

G K Patra, Thahir Ali, V Anil Kumar
 and R P Thangavelu

5.4 Statistical Analysis of Random Key Generation
 Algorithm

To demonstrate the robustness of the random key
generation algorithm (where two authenticated
communicating parties can generate a common
secret key from two random binary strings by
publicly using well known Error Correction and
Elimination mechanisms), a statistical analysis was
carried out of a large number of experiments.
Initially we generated 250,000 sets of binary strings
of size 10,000 bits. Let P(n,m,k) be the probability
of distribution of n and m at the kth iteration. It is
quite clear that P(n,m,k) is governed by a Markov
process, since the current probability depends only
on the preceding probability. Then the probability
density function of n and m of the kth distribution
can be represented as

where P(n, m, k /n', m', k -1) is the conditional
probability density function of n, m, k, n', m', k-1 which
transforms the probability distribution from one
iteration to the next iteration. We followed the
evolution of d(A,B) (Hamming distance d(A, B)
between A and B is defined as the number of
locations in which A and B do not match) and also
the distribution P(n,m,k) as a function of k. At each
k, we divide the range of values of n and m into a
fixed number of bins and we plotted the two
dimensional histogram of the frequency of the
occurrence of a given n, and m within

202

nn
n

)(minmax

×

−
±

 .

Fig 5.8 (nmax-nmin) and (mmax-mmin) with k for 250,000 sets [n
=10000-bits & l =16-bits]

This yields an estimate of P(n, m, k) at each k. We
found that the form of P(n, m, k) when normalized

1)k,m',P(n'1)k,m',k/n'm,P(n,k)m,P(n, −×−=

 57

as above did not change significantly (at least
visually) with k. This is reasonable since the
locations of the bits that match and are connected,
at each iteration are likely to be random. We note
that we can get an estimate of the conditional
probability density function P(n, m, k/n', m', k-1)
from the estimates of P(n, m, k) and P(n', m', k-1).
To demonstrate that the d(A,B) goes to zero for all
initial conditions considered in our numerical
experiments, we have plotted (nmax-nmin) and (mmax-
mmin) as a function of 'k'. We note that in our
experiments (nmax-nmin) converges to (mmax-mmin)
within 60 iterations indicating that in all the sets
considered n converges to m as k increases (shown
in Fig 5.8).

G K Patra, V Anil Kumar, R P Thangavelu and
 T R Ramamohan

5.5 High Performance Computing Resources

A significant improvement in the computing power
of C-MMACS was achieved with the installation and
commissioning of an SGI Altix 350 server
configured with 12 numbers of Itanium2 processors,
60 GB of main memory and 1 TB of fibre channel
RAID storage. This server runs on 64-bit Linux
operating system and has SGI ProPak & utilities,
Intel Fortran & C++ compilers, Intel VTune
performance analyzer, and MPI libraries for parallel
computing. Key applications on this server are
GFDL MOM, LMD GCM, and ABAQUS. Porting and
validation of applications such as GFDL MOM, LMD
GCM were carried out on Altix 350.

The Origin 3000 and Altix 350 servers were
maintained with an uptime efficiency of 99.8%
during the year while the network infrastructure was
maintained with 100% uptime efficiency. The
cumulative utilisation of the 24 processor Origin
3000 server so far has exceeded 4,50,000 CPU
hours.

An additional 2 TB RAID storage was added to the
Origin 3000 server to provide adequate storage
space for HPC users. The Origin 3000 server
continues to be the most preferred platform for
many users and the same is being upgraded to
Origin 3900 with 32 processors (MIPS R16000 @

1 GHz, 16 MB cache) and the upgraded system
will deliver 166% more performance than the
present one. The upgrade is expected to be
completed in June 2005. Enhancement of the Altix
350 server has been taken up and a Purchase
Order has been placed for additional 20
processors, 40 GB memory and 1 TB RAID storage
for the Altix 350 server. With this enhancement,
the total computing power on the HPC servers will
exceed 250 Gflops.

A detailed performance evaluation of HPC systems
using LMD GCM and GFDL MOM4 has been
carried out to identify suitable computer systems
to meet the current and upcoming computing
needs. The following high-end systems were
evaluated.

 1 Cray XD1 server based on Opteron processor
 2 HP Integrity servers based on the Itanium2
 processor
 3 IBM 570 and 720 servers based on Power5
 processor
 4 SGI Altix 3700 server based on the Itanium2
 processor
 5 Sun Fire V20z server based on Opteron
 processor

Based on the performance evaluation, the Cray
XD1 and the SGI Altix 3700 servers were short
listed. Two numbers of SGI Altix 3700 BX2 servers
with 24 processors each have been chosen based
on the price / performance. These two systems
together will deliver a computing power of 300
Gflops.

5.5.1 Storage Virtualisation Solution

Recognising the need for long term storage and
retrieval of scientific data in a user friendly and
transparent manner, an effort has been initiated to
set up a Storage Area Network (SAN) based high
performance 3-tiered storage virtualisation solution
leading to efficient data life cycle management. A
detailed technical study of currently available
storage solutions and the trends in storage
technologies was carried out by the HPC team.
Based on the technical study, the architecture and
basic design for the storage virtualisation solution

 58

have been completed and tenders were invited.
Evaluation of technical bids to identify suitable
solutions is in progress.

5.5.2 Other Hardware & Software Enhancements

Twenty numbers of Pentium4 processor based
Linux workstations were installed and configured
on the LAN. Many users have switched to Linux
environment from Windows. In order to provide
enhanced network services and midrange
application services, a set of Xeon and Pentium4
based servers are being procured. A web based
mail service has been introduced enabling users
to access their e-mails from anywhere in the
Internet.

Application software such as CFD-ACE+, NISA,
IDL, GAMIT/GLOBK and Intel compilers have been
upgraded. Totalview debugger has been installed
for source level debugging of parallel codes.
PBSpro workload management software has been
installed for efficient management and utilisation
of computing resources. Under the CSIR network
project, ABAQUS software for finite element

analysis has been procured and installed on the
HPC servers, which is available to all participating
laboratories in the network project. A current list of
hardware and software in the computing
environment can be accessed from the C-MMACS
website http://www.cmmacs.ernet.in.

5.5.3 Other Services

Computing services were provided to the practical
sessions of the Ocean Modelling and GPS courses
that were conducted in October and November
2004 respectively. The computing requirements for
the practical sessions of the Ocean Modelling
course were very demanding in nature and were
successfully managed using the PBSpro software.
Further, a software environment that is similar to
the one in GFDL was created for ease of use by
both the faculty, members and the participants.
Further, a large number of students from various
academic institutions have availed the computing
services at C-MMACS.

 R P Thangavelu, V Anil Kumar, G K Patra
and N Prabhu

