3. INDUSTRIAL COMPUTATIONAL MECHANICS

3.1 Determination of the Material
Properties of Road Pavement
Component Layers from Surface
Deflection Measurements —
Development of Mathematical Model
and Software

A mathematical model for the determination of stresses,
strains and displacements for given surface loads, at any
point in a multi-layered pavement system, has been
formulated. This model simplifies the problem considerably
and the algebra in the numerical scheme is lesser than in
the models of multi-layered systems available in the
literature. Transfer matrix approach is used in representing
the interface conditions which further simplifies the
problem. A numerical scheme and a software package
have been developed for the above problem and validated
against results published in the literature. Furthermore,
the surface displacement given by the model is compared
with experimental results obtained at CRRI with a falling
weight deflectometer (FWD). The comparison of model
results of average scaled deflection, for different values of
radial distance from the loading point, with the FWD results
for a three-layered system are shown in Figs. 3.17.7 and
3.1.2fortwo test points; the three-layered system consists
of a top layer of bituminous macadam, a middle layer of
stabilized soil and a subgrade of infinite thickness.

It can be seen from the Figs. 3.1.17 and 3.1.2 that the

Fig. 3.1.1. Average scaled deflection at test point 1 in a three-layer
pavement.

vertical displacements obtained using the model are
slightly higher than the FWD results. The reason for this is
the sensitivity of the problem to the material properties of
the layered system; the material properties used in the
analysis are those that have been obtained using the
backward analysis for deflection values obtained with FWD.
The question whether a choice of values of elastic
properties, other than those given by FWD, improves the
agreement between the model and the experimental
results is being investigated. Presently, the problem is
being analyzed for a wide range of elastic modulii values
typical of Indian roads which might give more insight into
the problem. Though the results given here are only
deflection values for a maximum of three layers, the
numerical scheme and the software can be used to obtain
the values of stresses, strains and displacements at any
point in a n-layered medium for both the uniformly
distributed and concentrated surface loads.

( Sridevi Jade, PK.Nanda" and S.P.Pokhriyal’ (‘CRRI))

3.2 Analysis of Strength and Deformation
of Jointed Rocks

Two aspects of the jointed rock mass behavior is dealt
with here: the finite element modeling of jointed rock mass
as an equivalent continuum and the comparison of
empirical strength criteria of jointed rock mass. In the finite
element modeling, the jointed rock properties are

Fig. 3.1.2. Average scaled deflection at test point 2 in a three layer
pavement.
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Fig. 3.2.1. Plot of unconfined compressive test data with the relationship
fitted for E,.

represented by a set of empirical relationships which
express the properties of the jointed medium as a function
of joint factor (J,) and properties of the intact rock. These
relationships have been arrived at from a large set of
experimental data of tangent elastic modulus. The
empirical relationship fitted from the experimental data
fortangent modulus ratio E_is givenin Fig. 3.2.1; E is the
ratio of the tangent modulus of the jointed rock to the intact
rock.

Results have been presented in the form of stress-strain
curves for jointed rocks (Fig. 3.2.2) and compared with
available experimental results. It can be seen from the
stress-strain curves that equivalent continuum analysis
gives best results for both single and multiple jointed rocks.
The reliability of the analysis depends upon the estimation
of J_ which is a function of the joint orientation, joint
frequency and joint strength.

The empirical strength criteria for the jointed rocks given
by Hoek and Brown, Yudhbir et al., Ramamurthy and Arora,
and Mohr-Coulomb have been incorporated in the
nonlinear finite element analysis of jointed rock using
equivalent continuum approach to determine the failure
stress. The results have been presented in the form of
major principal stress (Failure stress, c,) versus minor
principal stress (Confining pressure, c,) at failure (Fig.
3.2.3), obtained using different failure criteria and
compared with the available experimental results. The
major principal stress at failure obtained using
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Fig. 3.2.2. Stress-strain plot for a block jointed specimen of Gypsum
Plaster.

100
80 o =3
= o o © T
(<
< (]
b—‘ 60 - §
7
2 T o
[22]
o 40F o
= [ ]
= o
=~
<o Mohr
20 : PN Ramamurthy /F/
T Hoek
o Yudhbir
[ ] Experimental -Yaji o
Sandstone (60 )
% 2 4 6 8 10 12
Confining pressure, O, (Mpa)

Fig. 3.2.3. Comparison of strength criteria for single jointed specimen
of Sandstone.
Ramamurthy and Arora’s criteria compares very well with
the experimental results.

(Sridevi Jade and T.G.Sitharam’( lISc))

3.3 Finite Element Analysis of
Discontinuities in the Rock Mass

Nonlinear finite element analysis of jointed rock has been
carried out by representing the joints explicitly to study
the mechanical behavior of discontinuities in rock masses.
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Fig. 3.3.2. FEM model and the equivalent plastic strain contours with two discontinuities.

Three different rock materials have been analyzed with
single and multiple joints for different confining pressures
and axial loads. Intact rock mass is modeled using 2-D
Plane strain elements and the joint is explicitly modeled
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using 2-D Gap and Friction elements. The model is
subjected to uniform confining pressure on the two vertical
sides and uniform axial stress on the top. Isotropic elasto-
plastic material behavior with no strain softening is used




in the analysis. The axial load is applied in series of steps
orincrements. The incremental solution is performed in a
step-by-step manner until the full-specified loads are
applied. In each increment the modified Newton-Raphson
iterative scheme is performed until convergence is
achieved. Mohr-Coulomb yield criterion is used in the
analysis to determine the major principal stresses at failure.
The inclination of the discontinuity with the major principal
stress direction is varied from 0 to 90 degrees and the
confining pressure is varied from 0 to 10 MPa. Sensitivity
analysis of the model is carried out for coefficients of friction
and normal and tangential stiffnesses at the interface.

The finite element model along with the equivalent plastic
strain contours are given in Figs. 3.3.7 and 3.3.2 for the
one and two discontinuities respectively. The rock mass is
said to have failed when the yield criterion for the elastic
behavior is reached and the rock mass behavior becomes
plastic. The equivalent plastic strain contours represent
the weak zone in the rock mass where the rock starts to
fail. It can be seen from Figs. 3.3.7 and 3.3.2 that the
failure occurs at the discontinuity for the case of the single
joint. Fortwo joints, the failure occurs in the region between
the two discontinuities, a weak zone. The strength of the
FEM technique in the above lies in its generality and
flexibility to handle all types of loads, sequences of
construction, support conditions and different material
properties.

(Sridevi Jade and H.M.Chandrashekhar)
3.4 Non-Newtonian Fluid Flow Simulation

Non-Newtonian viscoelastic fluids have a complex
rheological behaviour. The provocative flow phenomena
observed with polymeric fluids cannot be predicted by the
Navier-Stokes equations. The theoretical challenge is to
model the complex rheological behaviour of polymeric
fluids in suitable constitutive equations and to use these
models in computations. Flow elasticity is characterised
by the Weissenberg number, We, defined as the ratio of a
characteristic fluid relaxation time to a characteristic flow
time. Viscoelastic flow computation at high We remains a
difficult task even today. The upper convected Maxwell
(UCM) and the Oldroyd B models of viscoelasticity are
employed to investigate flow in the entrance region of a
channel. The objective of the investigation has been to
study the development of viscoelastic stresses near the
entrance region as We is increased, to better understand
the high We problem. A finite volume approach is adopted
to discretise the governing equations on a computational
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grid, and the continuity equation is treated by a pressure
based method. Results for We of 0.1 for the UCM model,
and upto We of 10 for the Oldroyd B model have been
discussed. Viscoelastic flow around a cylinder in an
unbounded flow and placed in a channel is also being
investigated. Models which consider all polymer chains in
terms of mechanical equivalents, irrespective of their
chemical structure, are incapable of explaining many
unusual rheological phenomena. An energetically
crosslinked transient network (ECTN) model has been
recently given in the literature in which a polymer solution
is assumed to contain a physical crosslink and an energetic
crosslink. Investigation of flow around an array of cylinders
using the ECTN model is also under progress.

(A. Kumar, Hema Ravi, R.A. Mashelkar' (‘CSIR Hq.))

3.5 Supersymmetric Finite-Difference
Formulae

New finite-difference formulae have been developed such
that the discretisation of the Laplace operator is rotationally
invariant. These formulae, referred to as supersymmetric
finite-difference formulae, ensure that the mean value
theorem for a harmonic function is preserved on the
discretisation of the Laplace equation. Formulae in two
and three dimensions have been obtained.
Supersymmetric discretisation of the Laplacian in n-
dimensions is given.

The I,and /_stability limits of the heat conduction equation
in n-dimensions, which are 1/2n in conventional
differencing, have been shown to be 1/2 and 2"?/(2"-1),
respectively, under the supersymmetric discretisation.
Thus while the |, stability limit for the supersymmetric
discretisation is dimension-independent, the /_stability
limit is greater than 1/4 for any n.

(A. Kumar)

3.6 Numerical Investigation of Flow
Around a Vented Sphere

Several attempts comprising passive and energetic
methods have been made in the past to control the flow
past bluff bodies in order to achieve drag reduction. While
most of these pertain to two-dimensional bluff bodies,
there have been only a few attempts on a sphere, which
represents an idealised three-dimensional bluff body.
When the stagnation and the base regions of a sphere
are interconnected through an internal duct, mass,
momentum and energy are passively added into the near-



wake. The above concept of natural ventilation to reduce
the pressure drag of a sphere has been proposed earlier
by others and experimently investigated. We have
investigated this interesting flow using Navier-Stokes
equations. Axisymmetry of the flow has been assumed,
and a k-¢ turbulence model has been used. An attempt
has been made to gain insight into the mechanics of the
flow. Interesting interactions between the external shear
layer and the vent-jet were reported. Features of the near-
wake flow leading to some understanding of the vortex
shedding at a subcritical Reynolds member have been

Table 3.7

observed.
(A. Kumar and G K. Suryanarayana” (‘NAL))

3.7 Multi-Storey Infilled Frames Under
Combined Lateral and Vertical Loading

Infilled frames have been a subject of immense interest
for the researchers for well over three decades as an
efficient and effective lateral load resisting system. Linear
finite element analysis has been carried out on 4-storey
reinforced concrete (R.C.) infilled frame infilled with brick

Reduction of deformations and associated moments and forces in infilled frames over conventional frames

Structural Function

Load case

Lateral deformation

Vertical deformation

Bending moments
a. | floor beam

b. Windward Column

c. Leeward Column

Shear force
| floor beam

Axial Force
a. Windward Column

b. Leeward Column

i. lateral load only
ii. combined loads
iii. vertical load only

i. lateral load only
ii. combined loads
iii. vertical load only

i. lateral load only
ii. combined loads
iii. vertical load only

i. lateral load only
ii. combined loads
iii. vertical load only

i. lateral load only
ii. combined loads
iii. vertical load only

i. lateral load only
ii. combined loads
iii. vertical load only

i. lateral load only
ii. combined loads
iii. vertical load only

i. lateral load only
ii. combined loads
iii. vertical load only

% reduction in the function over its
conventional frame counterpart
Full contact Separation
89.10 - 99.98 87.47 - 99.97
89.08 - 99.98 88.35-99.97
85.58 - 99.95 83.04 - 99.95
23.94 - 98.97 25.48 - 98.90
45.80 -99.90 45.10 - 99.89
57.84 - 99.82 56.41 - 99.82
94.87 - 99.98 91.35-100.26
93.64 - 99.94 90.59 - 99.91
90.69 - 99.91 89.19-99.89
90.90 - 99.66 89.92 - 99.27
92.14 - 99.69 92.63 - 99.69
85.63-99.79 78.15-99.83
89.70 - 99.87 83.27 -99.87
88.73-99.70 87.67-99.73
85.63 -99.79 78.15-99.83
83.20-97.42 67.30 - 96.02
78.24 - 97.32 67.88 -97.24
76.30-97.19 69.62-97.14
-147.35 - 163.36 -143.50 -179.58
55.25-93.99 5522 -94.26
37.88-91.12 38.66-91.14
9.84 -79.60 6.05-75.98
23.93 -88.37 25.42 - 89.00
42.69 - 88.81 42.46 - 81.79

(- sign indicates increase)
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Fig. 3.7.1. Principal tensile stress contours in an infilled frame under
combined lateral and vertical loading.

masonry under constant lateral loads and varying vertical
loads. Varying relative stiffnesses of the frame to infill and
varying spans are the parameters considered in the
analysis for two cases of contact at interface, viz. full
contact and separation.

The finite element modeling consists of 2-D plane stress
elements representing the infill and 3-D beam elements
for the bounding frame. Short and very stiff 3-D beam
elements are used as links to represent the interface
wherein the node connecting the R.C. frame is merged
with the node on the frame and, for the node at the
masonry end of the inplane, rotational degree of freedom
is suppressed so that no moment is transferred to the
masonry. The physical separation of the frame from the
masonry is simulated using an iterative scheme where,
after each run, the axial force in each link is checked and,
if found in tension, the link removed. This iteration is
continued till a stable configuration of separations are
reached.

Four relative stiffness values and three aspect ratios have
been considered in the analysis which are illustrated in
the sketch on the right.

Conventional frames without the masonry have also been
analysed for the same conditions of geometry and loading.
The loading consists of 25 kN as the nodal lateral load at
the beam level and the transverse loads due to the live
component is varied from 10 kN/m to 40 kN/m on each
floor beam. For the case of vertical loads acting alone, a
load of 30 kN/m has been considered.

Typical stress contours and deformed geometry have been

18

Fig. 3.7.2. Principal compressive stress contours in an infilled frame
under combined lateral and vertical loading.

presented in Figs. 3.7.1 and 3.7.2 and a typical graphical
picture of variation of bending moments have been
presented in Fig. 3.7.3. Substantial reduction in lateral
and transverse deformations, bending moments, shear
forces and axial forces are observed in infilled frames and
in its members in comparison to conventional frames which
are illustrated in Table 3.7.

The masonry stresses (Fig 3.7.1 and Fig 3.7.2), which
are highly concentrated in the ground floor wall panel are
in for favourable change under combined loads. The
principal tensile stresses tend to reduce substantially under
combined loads in comparison to those in the case of
lateral loads acting alone. The principal compressive
stresses tend to increase with the addition of vertical loads.
The maximum stresses are normally located at the ends
of the leading and trailing diagonals of the ground floor
panel thus substantiating the diagonal strut theory even
for multistorey frames. The width of the diagonal strut does

DETAILS OF GEOMETRY
Relative Beam/Column
Stiffness sizes (mm)
é
R.C. Frame 3.52 400x400
7.04 200x200
I Masonry infill :;'?g 538;320
— Interface
h ! aspect
(mm) [ (mm) ratio
2700 2700 1.0
27001 4050 1.5
2700 5400 20
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Fig. 3.7.3. Variation of maximum bending moment in I-floor beam of 4-storey infilled frame for different load cases.

have a positive influence due to the vertical load
component.

Finally, vertical loads, which act in tandem with lateral loads,
do have a favourable influence on the behaviour of
multistorey infilled frames. The change in stiffness
characteristics is not very significant in contrast to strength
characteristics. Frames with solid infill are very efficient
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and effective to stand upto the lateral effects of wind and
seismic activity. Further work is underway to include the
effects of still floors (wall-less ground floors for parking or
other amenities) and lack of surface contact between the
floor beams and the masonry walls below.

(Sridevi Jade, D.S. Prakash*and R. Jagdish’
( ‘Bangalore University))



